原作者: 点我直达
一、hashMap 原理及实现
1.1 简介
众所周知 HashMap 底层是基于 数组 + 链表 组成的,不过在 jdk1.7 和 1.8 中具体实现稍有不同。
1.2 jdk1.7中
1.初始化桶大小,因为底层是数组,所以这是数组默认的大小。
2.桶最大值。
3.默认的负载因子(0.75)
4.table 真正存放数据的数组。
5.Map 存放数量的大小。
6.桶大小,可在初始化时显式指定。
7.负载因子,可在初始化时显式指定。
重点解释下负载因子:
由于给定的 HashMap 的容量大小是固定的,比如默认初始化:
public HashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
threshold = initialCapacity;
init();
}
给定的默认容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量达到了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。
因此通常建议能提前预估 HashMap 的大小最好,尽量的减少扩容带来的性能损耗。
根据代码可以看到其实真正存放数据的是
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
这个数组,那么它又是如何定义的呢?
Entry 是 HashMap 中的一个内部类,从他的成员变量很容易看出:
- key 就是写入时的键。
- value 自然就是值。
- 开始的时候就提到 HashMap 是由数组和链表组成,所以这个 next
就是用于实现链表结构。 - hash 存放的是当前 key 的 hashcode。
知晓了基本结构,那来看看其中重要的写入、获取函数:
put 方法
get 方法
再来看看 get 函数:
1.3 jdk1.8中
当 Hash 冲突严重时,在桶上形成的链表会变的越来越长,这样在查询时的效率就会越来越低;时间复杂度为 O(N)
因此 1.8 中重点优化了这个查询效率
先来看看几个核心的成员变量:
再来看看核心方法。
但是 HashMap 原有的问题也都存在,比如在并发场景下使用时容易出现死循环。
final HashMap<String, String> map = new HashMap<String, String>();
for (int i = 0; i < 1000; i++) {
new Thread(new Runnable() {
@Override
public void run() {
map.put(UUID.randomUUID().toString(), "");
}
}).start();
}
看过上文的还记得在 HashMap 扩容的时候会调用 resize() 方法,就是这里的并发操作容易在一个桶上形成环形链表;这样当获取一个不存在的 key 时,计算出的 index 正好是环形链表的下标就会出现死循环。
如下图:
遍历方式
还有一个值得注意的是 HashMap 的遍历方式,通常有以下几种:
二、concurrentHashMap 原理及实现
2.1 Base 1.7
是由 Segment 数组、HashEntry 组成,和 HashMap 一样,仍然是数组加链表。
它的核心成员变量:
/**
* Segment 数组,存放数据时首先需要定位到具体的 Segment 中。
*/
final Segment<K,V>[] segments;
transient Set<K> keySet;
transient Set<Map.Entry<K,V>> entrySet;
Segment 是 ConcurrentHashMap 的一个内部类,主要的组成如下:
static final class Segment<K,V> extends ReentrantLock implements Serializable {
private static final long serialVersionUID = 2249069246763182397L;
// 和 HashMap 中的 HashEntry 作用一样,真正存放数据的桶
transient volatile HashEntry<K,V>[] table;
transient int count;
transient int modCount;
transient int threshold;
final float loadFactor;
}
看看其中 HashEntry 的组成:
和 HashMap 非常类似,唯一的区别就是其中的核心数据如 value ,以及链表都是 volatile 修饰的,保证了获取时的可见性。
原理上来说:ConcurrentHashMap 采用了分段锁技术,其中 Segment 继承于 ReentrantLock。不会像 HashTable 那样不管是 put 还是 get 操作都需要做同步处理,理论上 ConcurrentHashMap 支持 CurrencyLevel (Segment 数组数量)的线程并发。每当一个线程占用锁访问一个 Segment 时,不会影响到其他的 Segment。
下面也来看看核心的 put get 方法。
public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}
首先是通过 key 定位到 Segment,之后在对应的 Segment 中进行具体的 put。
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
虽然 HashEntry 中的 value 是用 volatile 关键词修饰的,但是并不能保证并发的原子性,所以 put 操作时仍然需要加锁处理。
首先第一步的时候会尝试获取锁,如果获取失败肯定就有其他线程存在竞争,则利用 scanAndLockForPut() 自旋获取锁。
- 尝试自旋获取锁。
- 如果重试的次数达到了 MAX_SCAN_RETRIES 则改为阻塞锁获取,保证能获取成功。
再结合图看看 put 的流程。
- 将当前 Segment 中的 table 通过 key 的 hashcode 定位到 HashEntry。
- 遍历该HashEntry,如果不为空则判断传入的 key 和当前遍历的 key 是否相等,相等则覆盖旧的 value。
- 不为空则需要新建一个HashEntry 并加入到 Segment 中,同时会先判断是否需要扩容。
- 最后会解除在 1 中所获取当前 Segment 的锁。
get 方法:
public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}
get 逻辑比较简单:
只需要将 Key 通过 Hash 之后定位到具体的 Segment ,再通过一次 Hash 定位到具体的元素上。
由于 HashEntry 中的 value 属性是用 volatile 关键词修饰的,保证了内存可见性,所以每次获取时都是最新值。
ConcurrentHashMap 的 get 方法是非常高效的,因为整个过程都不需要加锁。
2.2 Base 1.8
1.7 已经解决了并发问题,并且能支持 N 个 Segment 这么多次数的并发,但依然存在 HashMap 在 1.7 版本中的问题。
那就是查询遍历链表效率太低。
首先来看下底层的组成结构
其中抛弃了原有的 Segment 分段锁,而采用了 CAS + synchronized 来保证并发安全性。
也将 1.7 中存放数据的 HashEntry 改为 Node,但作用都是相同的。
其中的 val next 都用了 volatile 修饰,保证了可见性。
put 方法:
- 根据 key 计算出 hashcode 。
- 判断是否需要进行初始化。
- f 即为当前 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功。
- 如果当前位置的 hashcode == MOVED == -1,则需要进行扩容。
- 如果都不满足,则利用 synchronized 锁写入数据。
- 如果数量大于 TREEIFY_THRESHOLD 则要转换为红黑树
get 方法:
- 根据计算出来的 hashcode 寻址,如果就在桶上那么直接返回值。
- 如果是红黑树那就按照树的方式获取值。
- 就不满足那就按照链表的方式遍历获取值。
1.8 在 1.7 的数据结构上做了大的改动,采用红黑树之后可以保证查询效率(O(logn)),甚至取消了 ReentrantLock 改为了 synchronized,这样可以看出在新版的 JDK 中对 synchronized 优化是很到位的
看完了整个 HashMap 和 ConcurrentHashMap 在 1.7 和 1.8 中不同的实现方式相信大家对他们的理解应该会更加到位。
其实这块也是面试的重点内容,通常的套路是:
- 谈谈你理解的 HashMap,讲讲其中的 get put 过程。
- 1.8 做了什么优化?
- 是线程安全的嘛?
- 不安全会导致哪些问题?
- 如何解决?有没有线程安全的并发容器?
- ConcurrentHashMap 是如何实现的? 1.7、1.8 实现有何不同?为什么这么做?
三、常见问题
3.1 解决hash碰撞还有哪些方法
我们知道,对象Hash的前提是实现equals()和hashCode()两个方法,那么HashCode()的作用就是保证对象返回唯一hash值,但当两个对象计算值一样时,这就发生了碰撞冲突。如下将介绍如何处理冲突,当然其前提是一致性hash。
- 线性探测(开放地址法)
- 二次探测(再哈希法)
- 拉链法
- 双重散列
- 多重散列
3.2 HashMap的长度为什么要是2的n次方
为了存取高效,要尽量较少碰撞,就是要尽量把数据分配均匀,每个链表长度大致相同,这个实现就在把数据存到哪个链表中的算法;
这个算法实际就是取模,hash%length,计算机中直接求余效率不如位移运算,源码中做了优化hash&(length-1),
hash%length==hash&(length-1)的前提是length是2的n次方;
版权属于:sunjianhua
本文链接:https://sunjianhua.cn/archives/java-map.html
转载时须注明出处及本声明,如果不小心侵犯了您的权益,请联系邮箱:NTA2MTkzNjQ1QHFxLmNvbQ==